
4
Non-determinism

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 371 of 758 (chapter 4: “Non-determinism” up to page 395)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Dis-
tributed Programming
2006, second edition, Prentice-
Hall, ISBN 0-13-711821-X

 [Barnes2006]
 Barnes, John
 Programming in Ada 2005
 Addison-Wesley, Pearson education, ISBN-
13 978-0-321-34078-8, Harlow, England, 2006

[AdaRM2012]
Ada Reference Manual - Lan-
guage and Standard Libraries;
ISO/IEC 8652:201x (E)

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 372 of 758 (chapter 4: “Non-determinism” up to page 395)

Defi nitions

Non-determinism by design:

A property of a computation which
may have more than one result.

Non-determinism by interaction:

A property of the operation environment which may
lead to different sequences of (concurrent) stimuli.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 373 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):

if x <= y -> m := x
 x >= y -> m := y

fi

 The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

All true case statements in any language are potentially concurrent and non-deterministic.

Selection is non-
deterministc for x=y

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 374 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):

if x <= y -> m := x
 x >= y -> m := y

fi

 The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

All true case statements in any language are potentially concurrent and non-deterministic.

Numerical non-determinism in concurrent statements (Chapel):

writeln (* reduce [i in 1..10] exp (i));
writeln (+ reduce [i in 1..1000000] i ** 2.0);

 The programmer needs to understand the
numerical implications of out-of-order expressions.

Selection is non-
deterministc for x=y

Results may be non-deterministc
depending on numeric type 00))

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 375 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by design

Motivation for non-deterministic design

By explicitly leaving the sequence of evaluation or execution undetermined:

 The compiler / runtime environment can directly (i.e. without any analy-
sis) translate the source code into a concurrent implementation.

 The implementation gains potentially signifi cantly in performance

 The programmer does not need to handle any of the details of a concur-
rent implementation (access locks, messages, synchronizations, …)

A programming language which allows for
those formulations is required!

 current language support: Ada, X10, Chapel, Fortress, Haskell, OCaml, …

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 376 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by interaction

Selective waiting in Occam2
ALT

 Guard1
 Process1

 Guard2
 Process2
…

• Guards are referring to boolean expressions and/or channel input operations.

• The boolean expressions are local expressions, i.e. if none of them evaluates to true
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false, the process is sus-
pended until further activity on one of the named channels.

• Any Occam2 process can be employed in the ALT-statement

• The ALT-statement is non-deterministic (there is also a deterministic version: PRI ALT).

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 377 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by interaction

Selective waiting in Occam2
ALT
 NumberInBuffer < Size & Append ? Buffer [Top]
 SEQ
 NumberInBuffer := NumberInBuffer + 1
 Top := (Top + 1) REM Size
 NumberInBuffer > 0 & Request ? ANY
 SEQ
 Take ! Buffer [Base]
 NumberInBuffer := NumberInBuffer - 1
 Base := (Base + 1) REM Size

• Synchronization on input-channels only (channels are directed in Occam2):

 to initiate the sending of data (Take ! Buffer [Base]),
a request need to be made fi rst which triggers the condition: (Request ? ANY)

CSP (Communicating Sequential Processes, Hoare 1978)
also supports non-deterministic selective waiting

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 378 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism by interaction

Select function in POSIX

int pselect(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 const struct timespec *ntimeout, sigset_t *sigmask);

with:
• n being one more than the maximum of any fi le descriptor in any of the sets.

• after return the sets will have been reduced to the channels which have been triggered.

• the return value is used as success / failure indicator.

The POSIX select function implements parts of general selective waiting:

• pselect returns if one or multiple I/O channels have been triggered or an error occured.

 ¬ Branching into individual code sections is not provided.

 ¬ Guards are not provided.

After return it is required that the following code
implements a sequential testing of all channels in the sets.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 379 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

… wait for more than a single rendezvous at any one time

… time-out if no rendezvous is forthcoming within a specifi ed time

… withdraw its offer to communicate if no rendezvous is available immediately

… terminate if no clients can possibly call its entries

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 380 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Message-based selective synchronization in Ada
selective_accept ::= select
 [guard] selective_accept_alternative
 { or [guard] selective_accept_alternative }
 [else sequence_of_statements]
 end select;

guard ::= when <condition> => selective_accept_alternative ::= accept_alternative |
 delay_alternative |
 terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]
delay_alternative ::= delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;

accept_statement ::= accept entry_direct_name [(entry_index)] parameter_profile [do
 handled_sequence_of_statements
 end [entry_identifier]];
delay_statement ::= delay until delay_expression; | delay delay_expression;

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 381 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Basic forms of selective synchronization
(select-accept)

select
 accept …
or
 accept …
or
 accept …
…
end select;

• If none of the entries have waiting calls
 the process is suspended

until a call arrives.

• If exactly one of the entries has waiting calls
 this entry is selected.

• If multiple entries have waiting calls
 one of those is selected (non-determin-

istically). The selection can be prioritized
by means of the real-time-systems annex.

The code following the select-
ed entry (if any) is executed and the
select statement completes.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 382 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
end select;

• If all conditions are ‘true’
 identical to the previous form.

• If some condition evaluate to ‘true’
 the accept statement after those condi-

tions are treated like in the previous form.

• If all conditions evaluate to ‘false’
 Program_Error is raised.

Hence it is important that the set of con-
ditions covers all possible states.

This form is identical to
Dijkstra’s guarded commands.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 383 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-else)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
else
 <statements>
end select;

• If all currently open entries have no waiting
calls or all entries are closed

 The else alternative is chosen, the as-
sociated statements executed and
the select statement completes.

• Otherwise one of the open entries
with waiting calls is chosen as above.

This form never suspends the task.

This enables a task to withdraw its of-
fer to accept a set of calls if no
tasks are currently waiting.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 384 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-delay)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
or
 when <condition> => delay [until] …
 <statements>
or
 when <condition> => delay [until] …
 <statements>
…
end select;

• If none of the open entries have waiting
calls before the deadline specifi ed by the
earliest open delay alternative

 This earliest delay alternative is chosen and
the statements associated with it executed.

• Otherwise one of the open entries
with waiting calls is chosen as above.

This enables a task to withdraw its of-
fer to accept a set of calls if no other
task is calling after some time.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 385 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-terminate)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
or
 when <condition> => terminate;
…
end select;

• If none of the open entries have waiting
calls and none of them can ever be called
again

 The terminate alternative is
chosen, i.e. the task is terminated.

This situation occurs if:
 … all tasks which can possibly call on
any of the open entries are terminated.

 or … all remaining tasks which can possibly
call on any of the open entries are waiting
on select-terminate statements themselves
and none of their open entries can be
called either. In this case all those waiting-
for-termination tasks are terminated as well.

terminate cannot be

mixed with else or delay

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 386 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

conditional_entry_call and timed_entry_call implements …

… the possibility to withdraw an outgoing call.

… this might be restricted if calls have already been partly processed.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 387 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Conditional entry-calls

conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

Example:

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

• If the call is not accepted immediately
 The else alternative is chosen.

This is e.g. useful to probe the
state of a server before commit-
ting to a potentially blocking call.

Even though it is tempting to use this
statement in a “busy-waiting” seman-
tic, there is usually no need to do so,
as better alternatives are available.

There is only one entry-call
and one else alternative.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 388 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Timed entry-calls

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

Example:
select
 Controller.Request (Some_Item);
 ------ process data
or
 delay 45.0; ------ seconds
 ------ try something else
end select;

• If the call is not accepted before the dead-
line specifi ed by the delay alternative

 The delay alternative is chosen.

This is e.g. useful to withdraw an entry
call after some specifi ed time-out.

There is only one entry-call and
one delay alternative.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 389 of 758 (chapter 4: “Non-determinism” up to page 395)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

asynchronous_select implements …

… the possibility to escape a running code block due to an event from outside this task.
(outside the scope of this course check: Real-Time Systems)

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 390 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism

Sources of Non-determinism
As concurrent entities are not in “lockstep” synchronization, they “overtake” each other
and arrive at synchronization points in non-deterministic order, due to (just a few):

• Operating systems / runtime environments:
 Schedulers are often non-deterministic.
 System load will have an infl uence on concurrent execution.
 Message passing systems react load depended.

• Networks & communication systems:
 Traffi c will arrive in an unpredictable way (non-deterministic).
 Communication systems congestions are generally unpredictable.

• Computing hardware:
 Timers drift and clocks have granularities.
 Processors have out-of-order units.

• … basically: Physical systems (and computer systems connected to the physical world)
are intrinsically non-deterministic.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 391 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism

Correctness of non-deterministic programs

Partial correctness:
(() ((,))) (,)P I terminates Program I O Q I O&/

Total correctness:
() (((,)) (,))P I terminates Program I O Q I O& /

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 392 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism

Correctness of non-deterministic programs

 Correctness predicates need to hold true
irrespective of the actual sequence of interaction points.

or

 Correctness predicates need to hold true
for all possible sequences of interaction points.

Therefore correctness predicates need to be based on invariants,
i.e. invariant predicates which are independent of the potential execution sequences,
yet support the overall correctness predicates.

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 393 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism

Correctness of non-deterministic programs
For example (in verbal form):
“Mutual exclusion accessing a specifi c resource holds true,
for all possible numbers, sequences or interleavings of requests to it”

An invariant would for instance be that the number of writing
tasks inside a protected object is less or equal to one.

 Those invariants are the only practical way to guarantee (in a logical sense)
correctness in concurrent / non-deterministic systems.

(as enumerating all possible cases and proving them individually is in general not feasible)

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 394 of 758 (chapter 4: “Non-determinism” up to page 395)

Non-determinism

Correctness of non-deterministic programs

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
end select;

Concrete:

 Every time you formulate a non-de-
terminstic statement like the one on
the left you need to formulate an
invariant which holds true whichever
alternative will actually be chosen.

This is very similar to fi nding
loop invariants in sequential programs

Non-determinism

© 2020 Uwe R. Zimmer, The Australian National University page 395 of 758 (chapter 4: “Non-determinism” up to page 395)

Summary

Non-Determinism

• Non-determimism by design:
• Benefi ts & considerations

• Non-determinism by interaction:
• Selective synchronization

• Selective accepts

• Selective calls

• Correctness of non-deterministic programs:
• Sources of non-determinism

• Predicates & invariants

